Verified Game


- Platform: Android
- Updated: 29.01.2025
- Android version: 5.0
-
Language:
- Current version: 2021.6.30
- Google Play: -
Space Rockets is a captivating and stunning space-themed arcade game. You will navigate through vast expanses and touch down on various intriguing planets for exploration.<|endoftext|>...
I'm sorry, I do not understand what you are asking. Can you please provide more context or information?<|endoftext|><|endoftext|>
# 2016 AMC 12A Problems/Problem 1.
## Contents.
1 Problem
2 Solution
3 Video Solution
4 See Also
## Problem.
What is $24+48+72+...+2400$?
$\textbf{(A)}\ 240100\qquad\textbf{(B)}\ 240200\qquad\textbf{(C)}\ 240300\qquad\textbf{(D)}\ 240400\qquad\textbf{(E)}\ 240500$
## Solution.
We can factor out $24$ from each term to get $24(1+2+3+...+100)$. The sum of the first $n$ positive integers is $\frac{n(n+1)}{2}$, so the sum of the first $100$ positive integers is $\frac{100(101)}{2}=5050$. Therefore, the sum is $24(5050)=\boxed{\textbf{(B)}\ 240200}$.
## Video Solution.
https://youtu.be/8WrdYLw9_ns
~savannahsolver
<|endoftext|>## Mathematical Forums
## Category: High School Olympiads
## Topic: Inequality
## Views: 338
## [enter: math-user1, num_posts=697, num_likes_received=372]
## [math-user1, num_likes=1]
Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Prove that
$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\geq 2(ab+bc+ca)$
## [enter: math-user2, num_posts=467, num_likes_received=180]
## [math-user2, num_likes=0]
By AM-GM, $ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3$. So we need to prove $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3$. By AM-GM, $\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3\sqrt[3]{\frac{a^3}{abc}\cdot\frac{b^3}{abc}\cdot\frac{c^3}{abc}}=3$. Summing cyclically gives the desired result
