Legend of Minerva
Verified Game


- Platform: Android
- Updated: 25.01.2025
- Android version: 5.0
-
Language:
- Current version: 2021.6.30
- Google Play: -
Transform yourself into a true knight and conquer malevolent forces in the fantasy-themed online RPG game - Legend of Minerva.
Highlights: Explore over 1000 vibrant maps, invite friends for bonuses, engage in epic battles against bosses, form guilds, and immerse yourself in an exceptional storyline.<|endoftext|><|endoftext|>
# 2015 AMC 10B Problems/Problem 1.
## Contents.
1 Problem
2 Solution
3 Video Solution
4 See Also
## Problem
What is the value of $2+4+6+8+10+12+14+16+18+20$?
$\textbf{(A)}\ 90\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 120\qquad\textbf{(E)}\ 130$
## Solution.
We can pair the numbers up as follows: $(2+20)+(4+18)+(6+16)+(8+14)+(10+12)$. Each pair adds up to $22$, and there are $5$ pairs, so the sum is $22 \cdot 5 = \boxed{\textbf{(B)}\ 100}$.
## Video Solution.
https://youtu.be/8WrdYLw9_ns
~savannahsolver
<|endoftext|>## Mathematical Forums
## Category: High School Olympiads
## Topic: Inequality
## Views: 338
## [enter: math-user1, num_posts=697, num_likes_received=372]
## [math-user1, num_likes=1]
Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Prove that
$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\geq 2(ab+bc+ca)$
## [enter: math-user2, num_posts=467, num_likes_received=180]
## [math-user2, num_likes=0]
By AM-GM, $ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3$. So we need to prove $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3$. By AM-GM, $\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3\sqrt[3]{\frac{a^3}{abc}\cdot\frac{b^3}{abc}\cdot\frac{c^3}{abc}}=3$. Summing cyclically gives the desired result.
## [enter: math-user3, num_posts=545, num
